Sidney Pressey was the first to design and create a Teaching Machine, nearly 40 years before Skinner, which presented content, took input from learners and provided feedback. He saw technology as offering an ‘industrial revolution’ in learning, allowing some tasks to be automated, reducing the burden on teachers.
Learning theory
He saw himself as an early cognitivist psychologist, decades before it replaced behaviourism as the dominant school in psychology and saw learning not in terms of simple reinforcement but a more complex process involving internal, cognitive features of the brain such as language, thought, reflection and writing. He refused to accept learning theory based on the reductionist behaviourism of animal psychologists such as Pavlov, the behaviourist evangelist Watson or Skinner, who he knew personally, and had little time for learning theory that excluded consciousness, language and mental phenomena. His teaching machines reflected this learning theory.
Teaching machines
Although there were Victorian precedents, the true origin of teaching machine was the relatively unknown figure of Pressey, who came up with his idea in 1915. He had to shelve the idea, as the First World War intervened, until he finally filed a patent in 1926. This was the first known machine to deliver content, accept input and deliver feedback. He is therefore the true originator of the first teaching machine.
His first machine used old typewriter parts to present multiple-choice questions with four options. The learner pressed a key for the right answer and the results were stored on a counter. It had the three necessary conditions for a teaching machine, the presentation of content, input by users and feedback.
His second machine had the innovation of not moving on until you got the right answer and he continued to innovate with teaching machines into the late 1950s. Pressey understood that such machines could be used for both teaching and testing. You could set the machine, using a simple lever, to only move on if the learner got the right answer or alternatively assess by recording all of their answers, right and wrong.
Using the second machine was easy, the learner simply pressed one of five keys (1-5), it had a small window that showed the numbers of questions asked and a window on the side showing the number of questions they got correct. In teaching mode the learners had to continue until the correct answer was chosen and the next question appeared. The question’s number did not change until it was answered correctly and the window on the side showed the number of tries. He argued that this was quick, gave immediate results so that the learner didn’t have to wait days for results and saved the teacher time from the drudgery of marking, also eliminating marking errors. He also argued that this could free teachers to teach in a more inspirational manner. The learner could also repeat the experience until they got full mastery. You could quickly reset for the next student in seconds or the next test and could cope with up to 100 questions. These arguments are sound. An interesting attachment to the main machine delivered a candy if you passed a threshold number of correct answers (the threshold could be changed on the machine via a dial). All for under $15. Unfortunately, his timing was bad and the Great Depression put an end to his dream of manufacturing and popularising individualised learning.
Learning theories
Pressey has very specific views on learning theory, more towards cognitive psychology than pure behaviourism. Errors or the correction of misconceptions were, for him, fundamental to learning, hence his fondness for multiple choice questions, which had 4/5 wrong answers. He saw learning as a complex process where relatively stable, cognitive structures had to be created. This had to be achieved through the analysis of errors, along with individualisation, diagnosis and feedback. Learning, for Pressey, was not a form of reinforcement, as with animals but involved uniquely human mediation through language, speaking, listening, reading and writing. It was a deeply cognitive process. He was the antithesis of Skinner, whose teaching machine was designed around positive reinforcement, hence his avoiding multiple choice questions, where the wrong answers (negative stimuli) outnumbered the right answer, that were actually given to the student, in advance of them having to think. Skinner saw this as weak learning and didn’t buy the idea that the study of wrong answers was anything but a distraction and, more seriously, seeding confusion in terms of what was learned.
Blended Learning
He even formulated an early theory of Blended Learning, which he called, rather clumsily, ‘Adjunct Autoinstruction’. This involved the combination of programmed learning through technology and human teaching. He never saw his Teaching Machines as replacing teachers but as merely adjunct ways of extending teaching and testing. Indeed, the whole point was to free teachers from the mundane tasks of basic learning and marking.
Influence
Pressey was convinced that education had to be reformed and called for an ‘industrial revolution’ in learning, based on the use of technology. He suffered a breakdown when his devices failed to sell and felt that the education system was closed to innovation. Skinner went on to build his own versions of mechanical Teaching Machines but by the 1960s mechanical teaching machines had had their day. As mechanical devices they were clunky and relied on discs, barrels, levers and buttons, all hardware and no software. They had little real effect on learning technology in the long-term, other than objects of obscure interest by commentators
Bibliography
Pressey S.L. 1933. Psychology and the new education. Harper.
Pressey S.L. & Janney J.E. 1937. Casebook of research in education. Harper.
Pressey S.L; Janney J.E. & Kuhlen R.G. 1939. Life: a psychological survey. Harper.
Pressey S.L; Robinson F.P & Horrocks J.E. 1959. Psychology in education. Harper.
Benjamin, L. T. (1988). A history of teaching machines. American Psychologist, 43(9), 703–712.
Mellan, I., 1936. Teaching and educational inventions. The Journal of Experimental Education, 4(3), pp.291-300.
Petrina, S., 2004. Sidney Pressey and the automation of education, 1924-1934. Technology and Culture, 45(2), pp.305-330.
Ferster, B., 2014. Teaching machines: Learning from the intersection of education and technology. JHU Press.
No comments:
Post a Comment