Saturday, February 27, 2021

Starlink changes everything. It may be the most important form of learning technology of the century

I was out in my garden in May last year, watching a stream of satellites pass in a line overhead. It was beautiful. Starlink changes everything. In online learning it absolutely changes everything. A global network of satellites delivering high speed broadband means that anyone, anywhere in the world can get high-speed broadband.

How does it work?

There are over 1000 satellites up already. Target is 2027 for thousands more satellites. Why so many? Well, each has a small cone of coverage but it cuts latency. Lasers between satellites travel at the speed of light. This is much faster than optical delivery through cable and allows global distribution with very low latency. Note that this will not wipe out urban networks but is great for rural and low density markets. If you are worried about space debris, their satellites have propulsion, collision software and can be dropped to disintegrate when they come to the end of their life.

What does it cost?

Prices at the moment are £89 plus £439 for the dish and speeds at 50-150mbs. However, speeds will soon double and prices will fall. It has over 10,000 users in its US beta program and is also delivering services to users in the UK. You can sign up right now.

How did we get here?

It’s less than 30 years since Tim Berners-Lee invented the world-wide web in 1991. There was no broadband 20 years ago from today. It started in the UK on 31 March 2000 and for years it was kilobits then just 2megabits by 2005. 50 megabits was introduced in 2008, 100 by 2010. This was an amazing achievement and has revolutionised play, work and learning.

1G networks were the first, 2G networks added data for things like SMS messages, 3G internet added even more and 4G, what we currently use, much faster internet access that has enabled social media and streaming. With every gear change comes faster and more efficient delivery. 5G delivers much, much higher speed and bandwidth. 4G caps out at 100 megabits per second (Mbps), 5G caps out at 10 gigabits per second (Gbps). That means 5G is x100 faster than 4G technology, theoretically at least. 

But what does this Starlink move mean? 

To be honest, this is not really about 5G. Starlink is more important than 5G. It allows us to work and learn anywhere. It will allow people to move out of cities. High bandwidth, low latency, reliable internet will change how we work and learn. Its timing is perfect with respect to Covid. Now that we've been through the Great Pause and learnt to work and learn more at home, Starlink accelerates this process.

Rural business

First, It’s a great leveller. It delivers high-speed broadband to all rural areas, allowing work to migrate out of the cities, also boosting local businesses. Broadband will. No longer be an urban thing. This is in line with the political demands in countries where populations have voted for less globalisations and urbanisation, in favour for a more geographically, equal distribution of wealth. SpaceX had to reach certain delivery speeds in order to participate in the Federal Communication Commission's up to $16bn Rural Digital Opportunity Fund. 

Developing world benefits

More than this, it allows broadband to be delivered to anywhere on the planet. This include the whole of the developing world. This is mind-boggling and may free up the talent in those economies, bringing them into the fold. Anyone can produce anything and sell their talents online. The local becomes global.

Global online learning

Post-Covid, the world will undoubtedly have taken a shift towards online learning in schools, colleges, Universities and the workplace. Forget the conspiracy theories, 5G wireless technology stands for ‘fifth generation’ cellular technology. Tie this up with Starlink, a low earth orbit network of satellites delivering blistering speeds to everywhere in the world and the engine that is AI, and we have a perfect storm that will transform global, online learning.

SpaceX's satellite internet system will offer still blazingly fast speeds of up to 1 gigabit per second. It will offer satellite internet to the entire planet, including remote locations where internet isn't currently available. Its satellites are low enough, and move (not geostationary), to deliver this with no blindspots. That’s an astounding leap. A couple of orders of magnitude better and global coverage. In terms of delivery and the user experience in online learning, this means a lot. In short, we can get online. learning anywhere.

Ultra low latency

We spend a lot of time watching that little circle spinning on our screens. Technically it’s called latency, the time taken to find, identify and transfer data. 5G will make this all but disappear. This matters when you’re delivering complex online learning, whether it’s video, simulations, AI, VR or AR.

The Media Equation: How People Treat Computers, Television and New Media Like Real People and Places by Byron Reeves and Clifford Nass, two Stanford academics, is full of juicy research on media in learning. It provides a compelling case, backed up with empirical studies, to show that that people confuse media with real life. This is actually a highly useful confusion: it is what makes movies, television, radio, the web and e-learning work. But their research also supports the case for 5G. 35 psychological studies into the human reaction to media all point towards the simple proposition that people react towards media socially even though, at a conscious level, they believe it is not reasonable to do so. They can't help it. In short, people think that computers are people, which makes online learning work.

Why is this relevant to 5G? Well in real life we live in real time. We don’t encounter little spinning circles, except when waiting on a late train or in a queue, and who wants that? Hearteningly, it means that there is no reason why online learning experiences should be any less compelling - any less 'human' in feel - than what we experience in the real world and the classroom. As long as a media technology is consistent with social and physical rules, we will accept it. Read that last part again, 'as long as a media technology is consistent with social and physical rules'. If the media technology fails to conform to these human expectations - we will very much not accept it.

The spell is easily broken. Nass & Reeves showed that unnatural ‘pauses’ inhibit learning. If the media technology fails to conform to our human expectations - we will NOT accept it. This is a fascinating lesson for online learning. We must learn to design our courseware as if it were being delivered in real-time by real people in a realistic fashion. The effectiveness of the user experience on an emotional level will depend as much on these considerations as on the scriptwriting and graphic design. It all has to work seamlessly, or the illusion of humanity fails. This has huge implications in terms of the use of media and media mix.

A simple finding, that shows we have real life expectations for media, is our dislike of unnatural timing. Slight pauses, waits and unexpected events cause disturbance. Audio-video asynchrony, such as poor lip-synch or jerky low frame-rate video, will result in negative evaluations of the speaker. These problems are cognitively disturbing. They lower learning. All that disappears with 5G.

Flawless streaming

Streaming will become much easier and almost flawless, allowing online learning to deliver whatever media is necessary at whatever time is optimal for learning. Note that this does not open the floodgates for over-engineered multimedia in learning, Media rich is not necessarily mind-rich. Many see video as the killer app for 5G. It is one but video is rarely enough on its own in learning. It will certainly boost LXP, personalised delivery of any media type.

AI mediated learning

AI delivered learning will also be easier as realtime calls to cloud-based AI services opens up smart solutions in learning. This opens up a new world for adaptive learning, feedback, chatbots, automated notifications based on xAPI, learning in the workflow. Specifically, it allows access to services, such as OpenAI API to tap into AI on demand. This means smarter, faster and better online learning. We free ourselves from the current presentation of flat, linear experiences. The process, and learning is not an event but a process, will be sensitive to each individual learner. Personalised learning becomes a reality. I mention Starlink in my book AI for Learning.

New user experiences

New user experiences and processes will be possible when we free ourselves from the tyranny of latency and slow speed internet. The promise of blended learning that can deliver great simulations, immersion and whatever one has delivered in the real world or classroom is now possible. New business models will emerge. New forms of learning with full immersion, AI, personalisation will emerge.

New devices

Rumours have it that Apple will be offering a ‘glasses’ or AR device. In any case, wearables, watches and small devices are now everywhere. 5G allows high speed access to and from these devices. This is not just about smartphones, it frees up fast internet speeds to all devices. We can link learning to devices that provide the context for learning. Where are you, what are you doing, then this is what we can do to help. This all becomes possible wherever you are indoors or outdoors, anywhere on the planet. 


The great leaps in learning technologies were writing, the alphabet, printing, broadcast media, computers, the internet and now AI and data. But this is the Internet with a difference. It's universal and global. Higher performance and improved efficiency empower new user experiences and connects new industries. This is not about boosting learning. It is about changing the very nature of education and learning. The implications for the poorer regions of the world are obvious, as it could be a great leveller. The tides rise with the gravitational pull of the moon, this is a rising tide that also comes from space, for everyone, one that doesn’t ebb.

Thursday, February 25, 2021

Head, Hand and Heart by David Goodhart

My favourite Tweet of this plague year?

There was never any lockdown. There was just middle-class people hiding, while working-class people brought them things.” 

It hit a Covid nerve because the people doing all the heavy lifting were the low-paid carers, nurses, supermarket staff, cooks, bin-collectors, bus and delivery drivers. Goodhart has written an unusual book, that should be read by all educators, at all levels – schools, colleges, Universities and workplaces - that exposes the straight-up hypocrisy behind an economic system that rewards knowledge workers at the expense of all others. Educational stratification has not created a better world, it has divided us and rewarded people unfairly. Inequalities have stretched societies to breaking point.

His is a plea for something I’ve fought for all my life, the rebalancing of society, economics and rewards away from the Head (cognitive work) towards the Hand (making and manual work) and Heart (health and care work). We have reached what he calls 'Peak Head' (which shouts out for metaphorical use!), the focus on funnelling everyone towards University degrees on a single route towards a single, cognitive elite. Many of the innovations in our past, such as the spinning jenny and steam engine were not driven by the University system. Entire economies in the east, China, South Korea and Taiwan, were built, not on a University system (they came later) but by a more rounded approach to development. 

It is not as if this elite has served us well. We saw their disastrous foray into Iraq, the financial crisis that nearly ruined us all, Brexit, Trump – we’re witnessing the fall-out. The danger he sees, is that this elite will suffer badly when technology replaces their work, quicker than it may replace the refuse collector or child-carer. What he recommends is policy built around the Heart, Hand and Head triumvirate.

Our educational system is hopelessly lop-sided towards the University sector. I spent years as an unpaid Director in The University for Industry trying to deliver basic skills, set up a £55 million charity for vocational learning, was a Trustee of City & Guilds, sponsored a youth football team and have always felt an affinity towards the talent that is squandered through straight snobbery and self-interest. It’s one of the reasons I voted for Brexit.

Goodhart explains how this hideous hostage taking of society, property and money has evolved and backs up arguments by Caplan in education, that too much money is completely wasted on signalling in Universities and that alternatives have to be found, even just on the basis of avoiding social unrest. Trump, Brexit, the gilets jaunes; all show that there is deep dissatisfaction among people who did not go to ‘Uni’. This deification of HE has been at the expense of the majority who do not go there. In my travels around campuses, here and abroad, you don’t have to walk far to find homeless people sleeping in the doorways of student accommodation. 

As we emerge from Covid, at last we have a book that has some ideas about the future. I don’t agree with everything he says, and would be much more radical, demanding blended learning and blended working as the default. But he’s pretty much on message for me. Note that this is not a page turner. It’s well written but analytic.

His The Road to Somewhere was a precursor to this book and one of the few books that actually explained why Brexit happened, naming the University system as one of the problems. This second book asks us a much more serious question. What are we going to do when Covid is over? Back to school with the same old satchels? Back to slabbing out lectures in exchange for crippling debt? Back to inhuman commutes and boxy offices? Back to flying here there and everywhere? Or a better sense of the common good?

He contrasts the centrifugal forces of hyper-globalisation stretched supply chains and the free movement of goods and capital, with a more centripedal set of ideas around the local, social stability and solidarity.

We seem to have lost the ability to create our future differently and fairly. It’s all groundhog day nostalgia for a past that was now clearly dysfunctional. Head, Heart and Hand – remember those three words when you put your bins out, buy something in a shop, order a takeaway and go out into the world, especially when you vote. I know, it's all a bit polemical but in serious times, you need to do some serious reading. 

Monday, February 22, 2021

From Nazi Punchcards to the Cambrian Explosion of LMSs and now LXPs - a short history of enterprise learning software



The LMS (Learning Management System) and now LXP (Learning Experience Platform) have lots of roots, best seen historically as growing from several roots; hardware, software, business software, connectivity and pedagogy.


One early hardware development was punch-cards systems, used in Jaquard's loom, invented in 1804. It allowed complex inputs to automate the production of complex patterns in weaving. Babbage wanted to incorporate these into his Analytical Engine but the idea was to be carried forward by Herman Hollerith, who worked for the US Census. He patented a punch cards system in 1884. It eventually had 12 rows and 24 columns, that could record human characteristics for the 1890 census. Cleverly the punched cards were run over cups of mercury and spring-loaded pins would complete the circuit where there was a hole. This was the first use of electronics for data storage. His machine could calculate totals but also combine traits. The time taken to complete the US census went down from eight to a single year, in 1890. Hollerith's company eventually, in 1924, became IBM.

In 1933 the germans, under Hitler, were keen to do a national census, as it would identify undesirable races and traits. Tom Watson, the first CEO of IBM flew to meet Hitler in 1933, made a sizeable investment in their German subsidiary. As Hitker expanded into other countries, this Hollerith systems was used to identify Jews and other races, as told in in the excellent book ‘IBM and the Holocaust’ by Edwin Black. It stored data on skills, race and sexual orientation. Jews, Gypsies, the disabled and homosexuals, were identified and selected for slave labour and death trains to the concentration camps. The LMS did not start well. 


There were other notable events around software such as the famous AI conference in 1956 at Dartmouth, where several projects emerged, even the first chatbot. There was a long period of experimentation before usable computers came along. This experimentation is summarised by Atkinson & Wilson (1969) with 21 papers looking at the then trends in CAI. The experimentation was especially strong in the military, as explained by Fletcher and Rockway (1986). PLATO and its rival TICCIT, were largely confined to academic experimentation although there were some corporate examples. All of this played a role, albeit it slow and relatively minor, as part of this period of experimentation. 

Down to business

Then home computers, made possible by the mass production of the microprocessor in 1971, led to an explosion of activity in the 1980s. But it was the IBM PC that game real impetus to CBT (Computer Based Training), when released in 1981, along with a rack of consumer computers such as the Commodore 64. This gave rise to an embryonic computer based training industry. My first learning programme, to teach Russian, was in the early 1980s on a Commodore 64. Other machines such as the BBC Micro in the early 80, in the UK, were seen immediately as having educational uses.

There were many programmes produced and distributed on floppy discs of various sizes. Other storage devices such as interactive videotapes, Videodiscs, laserdiscs, CDi and CD-ROM were used to store very larger amounts of data and media. There was a burst of creative activity, as video, audio and images could be used with the overlay of text from computers.

Then came networked enterprise systems, with client-server structures. IBM was a hardware then a software company but competed directly with Microsoft on software with their Lotus Smart Suite, Lotus 1-2-3, Lotus Notes and so on. This was a rival to Office, the last release being 2014! SAP was an early 1975 a spin off from IBM that stuck to ERM software. Microsoft was a software company built on their operating system then Office software that came along in 1988. Cisco 1984 out of Stanford, a networking company. Enterprise software became the norm, as it did for learning. All of these set the scene for learning systems that operated at the enterprise level.

LMS Cambrian Explosion

This all led to the Cambrian explosion of LMS, in 1999-2001, tracked in detail by Brandon Hall. Between 1999 and 2001 the sales of LMSs took off. Brandon Hall published a specification list and before long there were around 250 systems. On top of this HR companies like SAP, Peoplesoft and Oracle entered the LMS market. Then a split emerged between the LMS (corporate) and VLE (education market) with e-college, Blackboard and WebCT.

There were eventually two main groups. Those that developed out of client-server, training systems and those that were born on the web. Saba, Click2Learn, Pathlore, Learnframe and Thinq were originally client server and had to be rewritten for the web. They often used Java applets, client-end software and plug-ins, with a client-server back-end for administration. The born on the web group included Docent, KnowledgePlanet and Teamscape, which had web browser interfaces. They had the advantage of being more scalable, easier to roll-out and maintain, with fewer technical changes. Later open source LMSs emerged, the most successful being Moodle. This in turn was forked and corporate versions created. In late 2001 the market was made more complicated by the introduction of the LCMS (Learning Content Management System). These vendors claimed to have additional functionality around authoring, learning object repositories and dynamic delivery. The distinction was soon blurred as the LMS vendors adopted these features. Interestingly, the learning object approach has returned with micro-learning, 20 years later.

At the same time ADL and others came up with de facto standards. It is important to note that there are few real standards in e-learning: what we have instead is a collection of specifications, guidelines and reference models, a set of de facto (not de jure) standards. Across the range of LMSs on offer there were varying degrees of adoption of AICC, IMS and SCORM. Then there were accessibility standards, an increasing demand, especially in the public sector.

Dominant model

At the start, Brandon Hall issued a specification list that led to procurement against the list and so their complexity grew. Brandon Hall reported 27 LMSs in 1998, 50 in 2000 and by 2003 they had selected 70 LMSs. There were many more and the market continued to grow. Since then there have been lots of failures, mergers and acquisitions but it remains a large $7 billion market, having shifted to a SaaS model. For the last 20 years this has been the dominant model but there has always been dissatisfaction on integration, lack of data and shortfalls on functionality and delivery. 

As repositories for content, they were more about management than learning. There had always been dissatisfaction with the model, based on its poor interface, sign-ons, clumsy menu systems and delivery of ‘courses’. In a sense, they still mimic classroom courses, managing them after they had been converted to online. They fail to provide the flexibility needed in the workplace on both push and pull, moments of need and more sophisticated pedagogy, especially around motivation.

Learning Experience Design

Learning Experiences came from a different root. An early mention of Learning Experience Design is by McLellan (2002) who, prophetically, mentions Harvard Case Studies, simulations, virtual reality, artificial intelligence and recommends the rehabilitation of the emotional side of learning. She mentions Pine and Gilmore (1999), who talk of the ‘Experience Economy’, transformative experiences, that change us in some way. This line of thought was heavily influenced by the idea of attention and experiences that people were getting in games, imagery, TV, film on the web.

There was also a growing interest in UI and UX. The web was delivering a UI experience that was personalised, used recommendation engines and looks slick. The LXP world was similarly data-driven and started to sue recommendation engines, AI, sentiment analysis.

We need also remember the deep roots of media design from Radio, TV and Computer Games. The web delivered media and multimedia experiences that the learning community wanted to mimic. Hence the rise of video with Netflix /YouTube interfaces, audio had its roots in distance learning with the School of the Air in Australia, now as podcasts.

Another development was the rise of corporate social platforms, such as Yammer and Slack. These were eventually folded into the likes of Teams. There was also a move by Microsoft, SAP and others to focus more on workflow products.

Shift to LXP

The move from LMS to LXP came from a specific line of thought that had been around for 30 years - namely performance support. Gloria Gery (1991) defined this 30 years ago, in 1991, as EPSS – Electronic Performance Support Systems. Jay Cross (2011) worked tirelessly on this concept and more recent practitioners such as Bob Mosher (2011) have focused on moments of need and innovative forms of curation and performance support. The 70:20:10 movement spearheaded by Charles Jennings and Jos Arets have also helped highlight the need for real traction in the workplace with more of a mixture of formal content and informal techniques.

In addition Degreed and some other companies entered the corporate market. The LMS vendors are now busily transforming their LMS into an LXP or building an LXP from scratch. The LMS vendors are moving towards being LXPs and the LXO+P vendors are having to become LMSs. They will, in the end be single platforms and tools.

These new platforms use the technology of the day, AI and data, to signpost, recommend and automate workflow processes. xAPI will replace SCORM and data-driven approaches will push the old static forms of delivery aside. We live in the age of algorithms, and just as everything we do online is mediated by AI and personalised by using personal and aggregated data, so it will be with learning. This is outlined in my book AI for Learning.